上海安世亚太汇智科技股份有限公司欢迎您,咨询热线:021—58403100
Resources 资源中心
Hot Resources / 热门资源 More+
2020 - 11 - 25
作者:王晨希  上海安世亚太高频电磁高级技术专家本文共计2216字,阅读时间预计7分钟编者按作者分析了美国空军一号抵御核爆的秘密,包括如何抵御冲击波、核辐射以及电磁脉冲。在抵御电磁脉冲上,美国空军一号用了三层保护机制,可见对飞机这种精密电子飞行器杀伤力更大的当属电磁脉冲。大名鼎鼎的美国空军一号,美国总统的专属座机,被誉为世界上最安全的飞机。这架不同于任何传统客机的总统专机,拥有世界上最顶...
2020 - 10 - 21
作者:陈康 上海交通大学本文共计3111字,阅读时间预计10分钟编者按作者介绍了壁膜现象、欧拉壁膜模型与部分浸润效应的内在机理,并依此建模进行案例测试分析,以此探索不同壁膜接触角下与质量通量下壁膜形态演变规律的差异,希望可以启发更多的思考探索。介绍壁膜广泛存在于日常生活中,并且在工业生产中也扮演重要角色,如汽车车窗的除雾、冰箱设计、食品冷藏技术中冷凝壁膜的杀菌等应用。壁膜是由液滴撞击到固体壁面上形...
2020 - 10 - 13
作者:吴华春 上海安世亚太结构应用工程师本文共计1559字,阅读时间预计5分钟编者按在ANSYS LS-DYNA中,经常遇到Sliding Energy异常,作者在本文中分析了计算模型常出现的2种情况——初始穿透导致的Sliding Energy异常和由于SEGMENT接触导致的Sliding Energy异常,并给出了对应的解决方法。问题提出负的滑移能存在2种情况:■ 第一种情况:GLSTAT中...
2020 - 09 - 26
翻译:赵亚  上海安世亚太流体应用工程师本文共计1320字,阅读时间预计5分钟编者按上周我们谈到多相流的分类及仿真方法,如果大家记忆有些模糊的话,点此链接来回忆上篇内容吧!接下来作者会进行案例分析和行业解决方案解析,展示ANSYS在多相流仿真领域的运用。多相流仿真展望即使当今多相流仿真功能已经十分强大,但是工程师仍在努力推进多相流仿真的边界。他们将融入并模拟更多的物理模型:物化反应、运动...
2020 - 09 - 23
翻译:赵亚  上海安世亚太流体应用工程师本文共计1785字,阅读时间预计6分钟编者按作者分析了多相流的分类、仿真方法及未来发展方向,深入剖析了真实的产品案例和行业解决方案,并提出ANSYS仿真工具可以快速、高效地解决产品设计在多相流仿真中遇到的挑战,为企业的产品设计和生产节约成本。无论是设计高超声速运载工具的除冰系统、进行血液酶测试,还是输送和熔化稀有金属粉末化合物以进行增材制造,或是为...
2020 - 09 - 16
作者:陈诗佳  上海交通大学-巴黎高科卓越工程师学院谢文丽  上海安世亚太流体应用工程师本文共计1755字,阅读时间预计6分钟编者按作者使用Flownex对垃圾处理中心通风系统的局部管线进行模拟,对敞开式处理车间和封闭罐装设备的环境通风系统做出整体评估,并提出改进建议,同时对管线上的风机选型提出明确要求。研究目的随着国内环境三废处理规范要求越来越明细化,各种环保处理工...

服务热线 / Service Hotline

021-58403100

中国 • 上海 • 地址

上海市静安区石门一路288号兴业太古汇一座1201~1204室

热线电话:021-58403100

邮箱地址:sh.marketing@peraglobal.com

客户微信:PeraHZtech

垃圾处理中心除臭系统设计评估与风机选型
单份价格:
市场价:

份数: - + 件(库存件)

垃圾处理中心除臭系统设计评估与风机选型

介绍

作者:

陈诗佳  上海交通大学-巴黎高科卓越工程师学院

谢文丽  上海安世亚太流体应用工程师

本文共计1755字,阅读时间预计6分钟


编者按

作者使用Flownex对垃圾处理中心通风系统的局部管线进行模拟,对敞开式处理车间和封闭罐装设备的环境通风系统做出整体评估,并提出改进建议,同时对管线上的风机选型提出明确要求。

研究目的

随着国内环境三废处理规范要求越来越明细化,各种环保处理工艺可以说是百花齐放。但由于环保处理的对象具有极其复杂的来源,因此各种工艺和设备的处理效率仍需不断提高。这里就针对有机质固废集中处理中心的敞开式处理车间(低浓度臭气)和封闭罐装设备(高浓度臭气)的环境通风系统做一个评估。

处理车间的臭气产生量与处理废弃物种类、处理量、停留时间有关,这种环境下空气的换气率指标是有相应标准限定的。

■ 对于封闭罐装设备来说,高浓度臭气的产量与种类、储量、时间、压力、温度等参数相关。

有了这些基础数据以后,一般通风系统的管道布置设计就可以开始了,同时可以进行风机选型。

垃圾处理中心除臭系统设计评估与风机选型

由于垃圾处理中心处理的种类随着季节、处理量而变化,通风系统需要随之重新改造或升级。因此,对现有通风系统的评估和改造是相关企业经常面临的事。

本文使用集成CFD程序的一维管网系统设计软件——Flownex,对垃圾处理中心的通风管路系统的局部管线进行模拟,评估现有运行参数下每一个吸风口的风量,并提出改进建议,同时对管线上的风机选型提出明确要求。


Flownex软件简介

Flownex是一款优秀的一维管网系统热流体设计、优化软件。

■ 它在电力、核能、化工、船舶、燃机、建筑、天然气管网、航站楼飞机供油管路系统等领域都有广泛的运用

■ 它含有丰富的过流元件(图1所示)(如管道、阀门、换热器)、流动控制元件、动力元件(风机、水泵、压缩机、锅炉、燃烧室、核电反应堆等)、从动元件(汽轮机、涡轮、电机等)、输配电系统和优化设计模块等。

■ 它丰富的外部接口可以耦合其他软件如ANSYS CFD/Mechanical、MATLAB/Simulink、RELAP、ROHR2、EES、Excel、OPC、Labview、MathCad等,以及其他数据文件如GIS、PCF(Autodesk inventor)、Cape-Open及用户二次开发模块等;也可以应用于各种流体介质(含两相流、相变等)的管网系统评估。

垃圾处理中心除臭系统设计评估与风机选型

图1:Flownex界面示意图


案例分析

通风除臭系统结构简图

通风除臭系统结构(图2)由不同面积、标高的矩形风管组成,每个进口都布置有格栅(图3),进气口支路上安装有风量调节阀,管路有3处位置布置了不同风量的风机。

垃圾处理中心除臭系统设计评估与风机选型

                             图2:系统结构简图                                              图3:吸风口格栅


Flownex系统搭建

依据通风除臭系统结构,搭建下图(图4)所示Flownex流动网络。其中:

①和②段为气体出口,其余均为进气风口。

■ 气体由出口①汇总后进入吸收塔进行净化(此案例未分析)。

■ 边界条件:①给定出口质量流量Q=60000 m3/h,其余边界均设置总压为1 atm,温度为25℃。

垃圾处理中心除臭系统设计评估与风机选型

图4:通风除臭系统管路示意图


系统管路中的主要部件——吸风口格栅、风力调节阀、轴流风机、风管等,分别在Flownex中的元件库中获得,如下(表1)所示。其中:

■ 吸风口格栅:由流阻元件与节流元件连接构成,流阻曲线通过三维仿真结合数据拟合获得。

■ 风量调节阀:选用蝶阀元件来表示,并通过调节阀门开角获得对应损失系数。

■ 轴流风机:轴流风机特性曲线由实际风机型号获得。

■ 风管:方型通风管道等效为圆管,采用Darcy-Weisbach公式计算流动损失:

垃圾处理中心除臭系统设计评估与风机选型

■ 粗糙度:基于“建筑行业设计手册”,通风管道粗糙度本文设定粗糙度为30μm。

垃圾处理中心除臭系统设计评估与风机选型

表1:系统主要部件及其对应Flownex元件

通风除臭系统分析

对原定除臭系统中的风管管路进行分析,获得各风口速度分布(图5)及最小和最大的吸风口位置。

通过分析可以看出,最小速度风口和最大速度风口相差很大,导致最小风口出风量很少,不能达到除臭效果,管路风量匹配不均匀。因此,需要重新匹配更合理的风机。

垃圾处理中心除臭系统设计评估与风机选型

图5:吸风口进气速度分布

风机合理匹配

依据风机位置,将管路系统划分为A、B、C三段,通过分段模拟获得每段管路的流阻特性曲线,并给出对应风机的合理选择范围。

垃圾处理中心除臭系统设计评估与风机选型


 管路段A

管路段A的Flownex网络及边界条件设置(如图6)所示。通过调整出口流量,计算对应流动损失,获得管路段A的流阻特性曲线。

经计算分析后,风机A应满足如下条件:

650 m3/ℎ < Qfan < 1470 m3/ℎ 。

垃圾处理中心除臭系统设计评估与风机选型

图6:管路段A的Flownex网络及边界条件


 管路段B

使用相同方法获得管路段B的流阻特性曲线。此段管路入口即为管路段A(或风机A)出口,因此将其流量设定为管路段A的流量极限值Q1=1500 m3/ℎ。

对于管路段B,当出口流量为3000—20000 m3/ℎ时,吸风口进气速度均在0.2m/s到7m/s的范围内。

由此,风机B应满足:

3000 m3/ℎ < Qfan < 19000 m3/ℎ。

垃圾处理中心除臭系统设计评估与风机选型

图7:管路段B的Flownex网络及边界条件


 管路段C

使用相同方法获得管路段C的流阻特性曲线。除变化数值的流量出口外,其余进气口均设定为压力边界,Ptot = 1atm。

基于同样的判定标准,风机C的合理范围为:

3100 m3/ℎ < Qfan < 49000 m3/ℎ

垃圾处理中心除臭系统设计评估与风机选型

图8:管路段C的Flownex网络及边界条件


结论

Flownex作为一款优秀的一维热流体系统分析软件,通过对现有垃圾处理中心通风环境系统的评估,可很快找出各个吸风口风量不均的实际原因,为后期扩容改造或风道优化设计及优化运行参数提供重要的技术支撑。

随着垃圾处理中心的数字化、智能化改造发展趋势,Flownex可以接入BIM系统,并与其他数字孪生平台结合(如ANSYS TWIN BUILDER),可实现通风系统关键设备与部件的动态运行优化与诊断,从而提高运行效率、降低能耗、延长设备的使用寿命,提高设备的可靠性。



*本文版权归上海安世亚太所有,

如需转载,请与我们联系。

视频
文件下载
推荐 / Products
2020 - 11 - 25
作者:王晨希  上海安世亚太高频电磁高级技术专家本文共计2216字,阅读时间预计7分钟编者按作者分析了美国空军一号抵御核爆的秘密,包括如何抵御冲击波、核辐射以及电磁脉冲。在抵御电磁脉冲上,美国空军一号用了三层保护机制,可见对飞机这种精密电子飞行器杀伤力更大的当属电磁脉冲。大名鼎鼎的美国空军一号,美国总统的专属座机,被誉为世界上最安全的飞机。这架不同于任何传统客机的总统专机,拥有世界上最顶尖的防御系统,包括防核弹冲击系统、反导系统、诱饵系统,内部设施包括总统生活区、飞行指挥中心以及大名鼎鼎的The nuclear football核弹密码箱等。▲ 空军一号空军一号有两架,飞行呼号都是Special Air Mission 28000和29000,当美国任何一个空中管制员听到这个呼号后都明白美国总统就在上空。空军一号曾一度是国家机密,用以在平常以及核战争时期充当美军的最高指挥中心。▲ 空军一号内部那么作为世界上安保最全面的飞机,面对末日核打击,该如何保护总统及机上人员安全?下面为大家揭开空军一号抵御核爆的秘密。▲ 核弹密码箱首先需要说明的是,无论空军一号的防护多么完备,发生核爆时都不可能在原爆点存活。因为现今人类发明的最强隔热物质能够隔绝的温度不过几千摄氏度,而核爆原爆点几公里内的温度可以达到上千万摄氏度,热核武器甚至可以达到上亿摄氏度,所有的物质都会瞬间气化。空军一号对核爆的防护主要是针对的是冲击波、核辐射以及电磁脉冲。 抵御冲击波今年8月份,在黎巴嫩首都贝鲁特发生了巨大爆炸,强大的冲击波造成了多栋房屋受损,玻璃震碎,港口完全被炸毁,距爆炸地点10多公里的总统府建筑也因此受损。与贝鲁特硝酸铵爆炸产生的冲击波相比,核爆产生的冲击波威力要强大得多,覆盖范围也要大非常多。▲ 贝鲁特爆炸冲击波▲ 核冲击波 为了抵抗...
2020 - 10 - 21
作者:陈康 上海交通大学本文共计3111字,阅读时间预计10分钟编者按作者介绍了壁膜现象、欧拉壁膜模型与部分浸润效应的内在机理,并依此建模进行案例测试分析,以此探索不同壁膜接触角下与质量通量下壁膜形态演变规律的差异,希望可以启发更多的思考探索。介绍壁膜广泛存在于日常生活中,并且在工业生产中也扮演重要角色,如汽车车窗的除雾、冰箱设计、食品冷藏技术中冷凝壁膜的杀菌等应用。壁膜是由液滴撞击到固体壁面上形成的。液滴撞击壁面后的情况有以下四种:■ 附着(stick):液滴以很小的动能撞击壁面并近似保持球形;■ 反弹(rebound):液滴改变速度,相对完整地离开壁面;■ 铺展(spread):液滴以中等动能撞击壁面并铺展为壁膜;■ 飞溅(splash):液滴的一部分留在壁膜中,另一部分以一些更小尺寸的小液滴离开壁面。薄膜假设:壁膜厚度远小于壁面的曲率半径,壁膜在厚度上的属性是一致的,且壁膜流动平行于壁面。基于以上假设下的壁膜模型分为基于场的欧拉壁膜模型和基于粒子的拉格朗日壁膜模型。本文采用欧拉壁膜模型。▲ 图1. 壁膜模型示意图▲ 图2. 液滴与壁面相互作用决策图欧拉壁膜的质量、动量、能量守恒质量守恒等式左边:非稳态项和对流项;等式右边:单位面积下的质量源项,如液滴收集、壁膜分离、壁膜脱落、相变等行为下,需更新壁膜质量源项。动量守恒等式左边:非稳态项和对流项等式右边:→ 第一项:扩散项:其中,压力=气流压力+垂直于壁膜的重力分量+表面张力→ 第二项:重力源项:平行于壁膜的重力分量→ 第三&四项:净粘性切应力源项:气流-壁膜之间&壁面与壁膜之间→ 第五项:动量源项:液滴的收集与分离→ 第六项:表面力源项:壁膜的表面张力、壁膜与壁面间的接触角能量守恒等式左边:非稳态项和对流项等式右边:→ 第一项:气流-壁膜间与壁...
2020 - 10 - 13
作者:吴华春 上海安世亚太结构应用工程师本文共计1559字,阅读时间预计5分钟编者按在ANSYS LS-DYNA中,经常遇到Sliding Energy异常,作者在本文中分析了计算模型常出现的2种情况——初始穿透导致的Sliding Energy异常和由于SEGMENT接触导致的Sliding Energy异常,并给出了对应的解决方法。问题提出负的滑移能存在2种情况:■ 第一种情况:GLSTAT中的滑移能在初始状态就出现负值,如图-1所示。▲ 图-1 第一种能量异常图■ 第二种情况:CAE工程师在利用ANSYS LS-DYNA进行计算时,很多时候会碰到图-2所示的状况,严重的能量不平衡。内能、滑移能在计算前期表现还算正常,但是到计算后期,内能、动能、滑移能严重偏离,导致整个模型能量异常,计算结果不可信。▲ 图-2 第二种能量异常图解决方法第一种情况的解决方法(初始穿透)在仿真模型中出现初始穿透,导致初始的滑移能为负值。仿真穿透模型如图-3所示。产生机理:LS-DYNA在进行接触搜索时,发现存在网格穿透问题,需要把穿透部分的节点移到不穿透的位置,这可以在LS-DYNA软件中设置。如图-4所示,当把初始穿透清除后,其滑移能和整个模型能量表现正常(如图-5所示)。▲图-3 存在初始穿透模型▲ 图-4 清除初始穿透模型▲ 图-5 第一种能量正常图初始穿透解决方法有以下几种① 手动调整单元节点  在进行模型网格划分和设置零件厚度时必须确认是否存在干涉,即必须考虑壳单元的接触厚度。如果发生穿透,可以从计算出的message或d3hsp文件中对关键字“initial penetrations”进行搜索,找到相关单元,然后调整单元节点,消除初始穿透。在一些专门的前处理软件中,例如ANSA,HYPERMESH、SpaceClaim在提交计算前对模型进行...
地址:中国·上海·浦东新区平家桥路36号晶耀前滩5号楼901室
电话:+86 0755-2955 6666
传真:+86 0755-2788 8009
邮编:330520
Copyright ©2005 - 2013 上海安世亚太汇智科技股份有限公司
犀牛云提供企业云服务